Identification of semi-parametric hybrid process models

نویسندگان

  • Aidong Yang
  • Elaine B. Martin
  • Julian Morris
چکیده

Hybrid models are mathematical models that comprise both mechanistic and black-box or datadriven components. Typically, the parameters in the mechanistic part of a hybrid model (if any) are assumed to be known. However in this research, a two-level approach is proposed for the identification of hybrid models where some parameters in the mechanistic part of the model are unknown. At the first level, the black-box component is identified using a regularization method with given values for the regularization and mechanistic parameters. At the second level, the regularization and mechanistic parameters are determined simultaneously and optimized according to a specific criterion placed on the predictive performance of the hybrid model. This approach is tested through the modelling of a toluene nitration process, where a support vector machine (SVM) model is used to represent the chemical kinetics, with the mass transfer-related mechanistic parameters being estimated simultaneously. The case study shows that good results can be obtained in terms of both the prediction of the process variables of interest and the estimates of the mechanistic parameters, when the measurement error in the training data is small whilst when the magnitude of the measurement error increases, the accuracy of the estimates of the mechanistic parameters decreases. However, the predictive performance of the resulting hybrid model in the latter case is still acceptable, and can be much better than that attained from the application of a pure black-box model under certain extrapolation conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric optimization of cylindrical grinding process through hybrid Taguchi method and RSM approach using genetic algorithm

The present investigation proposes a hybrid technique: Taguchi method, response surface methodology (RSM) and genetic algorithm (GA), to analyze, model and predict vibration and surface roughness in traverse cut cylindrical grinding of aluminum alloy. Experiments have been conducted as per L9 orthogonal array of Taguchi methodology using several levels of the grinding parameters. Analysis of va...

متن کامل

Bayesian Identification of Semi-Parametric Binary Response Models

In this paper, minimal conditions under which a semi-parametric binary response model is identified in a Bayesian framework are presented and compared to the conditions usually required in a sampling theory framework. Running headline: Semi-parametric Binary Response Models.

متن کامل

The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models

Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...

متن کامل

Evaluation Approaches of Value at Risk for Tehran Stock Exchange

The purpose of this study is estimation of daily Value at Risk (VaR) for total index of Tehran Stock Exchange using parametric, nonparametric and semi-parametric approaches. Conditional and unconditional coverage backtesting are used for evaluating the accuracy of calculated VaR and also to compare the performance of mentioned approaches. In most cases, based on backtesting statistics Results, ...

متن کامل

Semi-parametric Quantile Regression for Analysing Continuous Longitudinal Responses

Recently, quantile regression (QR) models are often applied for longitudinal data analysis. When the distribution of responses seems to be skew and asymmetric due to outliers and heavy-tails, QR models may work suitably. In this paper, a semi-parametric quantile regression model is developed for analysing continuous longitudinal responses. The error term's distribution is assumed to be Asymmetr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Chemical Engineering

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2011